Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7630, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561437

RESUMEN

When radioactive materials are released into the environment due to nuclear power plant accidents, they may enter into the body, and exposing it to internal radiation for long periods of time. Although several agents have been developed that help excrete radioactive elements from the digestive tract, only one type of radioactive element can be removed using a single agent. Therefore, we considered the simultaneous removal of caesium (Cs) and strontium (Sr) by utilising the multiple metal removal mechanisms of probiotic bacteria. In this study, the Cs and Sr removal capacities of lactobacilli and bifidobacteria were investigated. Observation using an electron probe micro analyser suggested that Cs was accumulated within the bacterial cells. Since Sr was removed non metabolically, it is likely that it was removed by a mechanism different from that of Cs. The amount of Cs and Sr that the cells could simultaneously retain decreased when compared to that for each element alone, but some strains showed only a slight reduction in removal. For example, Bifidobacterium adolescentis JCM1275 could simultaneously retain 55.7 mg-Cs/g-dry cell and 8.1 mg-Sr/g-dry cell. These results demonstrated the potentials of utilizing complex biological system in simultaneous removal of multiple metal species.


Asunto(s)
Cesio , Estroncio , Bacterias , Radioisótopos de Estroncio/análisis , Radioisótopos de Cesio
2.
Nat Commun ; 15(1): 953, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296961

RESUMEN

Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.


Asunto(s)
Autoinmunidad , Proteínas Mitocondriales , Ratones , Animales , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Autofagia , Células Epiteliales/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo
3.
Appl Microbiol Biotechnol ; 102(14): 6155-6162, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29744632

RESUMEN

The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (qmax) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu2+ > Ba2+ > Sr2+ > Cd2+ > Co2+ > Mg2+ > Ni2+. The qmax showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.


Asunto(s)
Cationes Bivalentes/metabolismo , Lacticaseibacillus casei/metabolismo , Metales/metabolismo , Adsorción , Cadmio , Cobre , Concentración de Iones de Hidrógeno , Intercambio Iónico , Cinética , Lacticaseibacillus casei/crecimiento & desarrollo , Contaminantes Químicos del Agua , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...